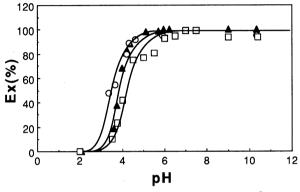
Molecular Design of a Calix[6]arene-Based Super-Uranophile with C₃ Symmetry. High UO₂²⁺ Selectivity in Solvent Extraction

Koji ARAKI, Norifumi HASHIMOTO, Hideyuki OTSUKA,
Takeshi NAGASAKI, and Seiji SHINKAI*

Department of Organic Synthesis, Faculty of Engineering,
Kyushu University, Fukuoka 812

Calix[6]arene bearing three carboxylate groups arranged in C_3 symmetry formed a 1:1 complex with $UO_2{}^{2+}$ and showed much more excellent selectivity factors for $UO_2{}^{2+}$ in solvent extraction than calix[6]arene bearing six carboxylate groups. This establishes that the essence of "super-uranophiles" is related to the molecular design of C_3 symmetry.

X-Ray crystallographic studies have established that UO₂²⁺ complexes adopt either a pseudoplanar pentacoordinate or hexacoordinate structure, which is quite different from the coordination structures of other metal ions. This suggests that a macrocyclic host molecule having a nearly coplanar arrangement of either five or six ligand groups would serve as a specific ligand for UO₂²⁺ (i.e., as a uranophile). This approach has been investigated by several groups. 1-7) We previously found that water-soluble calix[6] arene 1, which exactly satisfies the above prerequisite, forms a 1:1 complex with UO_2^{2+} and has a remarkably high stability constant $(K_{uranyl} =$ $10^{18.7}$ dm³ mol⁻¹) and selectivity factors (K_{uranvl} / K_{M} n+ > 10^{12}) in water.³) Based on these findings, we designed lipophilic calix[6] arenes 2 and 3.4,7) Although these calix[6] arenes could efficiently extract UO₂²⁺ from aqueous solution to organic phase, the extracted species turned out to be a 1:3 calix[6]arene/UO₂²⁺ complex and the selectivity factors in two-phase solvent-extraction were not so excellent as those in 1 in an aqueous system.^{4,7)} We thus considered that to imitate the structure of the stable uranyl tricarbonate complex, UO2(CO3)34- three carboxylate groups suffice and extra three carboxylate groups in 2 rather hamper the selectivity factors. Conceivably, more important is to arrange these three essential carboxylate groups in C₃ symmetry to yield the hexaccodinate structure. Here, we synthesized compound 4 in which three carboxylate groups are arranged in C₃ symmetry and tested the UO₂²⁺ selectivity in a two-phase solvent-extraction system.


Compound 4 was synthesized according to the literature⁸⁾ and identified by IR, The details of solvent extraction and analysis of ¹H NMR, and elemental analysis. metal concentrations were described previously.⁴⁾ The pH dependence for UO₂²⁺ extraction (Fig. 1) shows that the extractability of 4 is a little inferior to those of 2 and 3 but reaches nearly 100% at pH 7. At pH 5.9 (buffered with 10 mmol dm⁻³ potassium acetate) we carried out extraction in the absence and the presence of UO_2^{2+} in the agueous phase. In the absence of UO_2^{2+} we detected 1.2 equiv. of K^+ in the chloroform phase whereas in the presence of UO_2^{2+} we detected 4: UO_2^{2+} : K^+ 1.0: 0.85: 1.2 in the chloroform phase. The results support the following extraction scheme including the formation of the 1:1 calix[6]arene/ UO_2^{2+} complex: UO_2^{2+} (aq) + $K^+ \cdot 4H_2$ (org) \longrightarrow 2H⁺(aq) + UO₂²⁺ $\cdot K^+ \cdot 4^3$ ((org) where 4H₃ denotes undissociated The formation of the 1:1 calix[6]arene/UO₂²⁺ complex is further confirmed by the molar ratio plot in Fig. 2, which gives a breakpoint at $[4]/[UO_2^{2+}] =$ These results indicate that 4 bearing three carboxylate groups in C₃ symmetry forms the 1:1 complex as 1 did in homogeneous aqueous solution.³⁾

We confirmed if the $UO_2^{2+} \cdot M^+ \cdot 4^{3-}$ complex adopts C_3 symmetry similar to the $UO_2(CO_3)_3^{4-}$ complex. $C_5^+ \cdot 4H_2^-$ and $UO_2(NO_3)_2$ (1:1 mole ratio) were dissolved in a mixed solvent of DMSO- d_6 and CDCl₃ (1:1 v/v) and the resultant solution was subjected to ¹H NMR measurement (30 °C, 250 MHz): δ 0.78 and 1.37 (t-Bu, s each, 27H each), 4.46 (OCH₂ and endo-ArCH₂Ar, br s, 12H; exo-ArCH₂Ar protons are overlapped with water protons in solvent (ca. 3.4 ppm)), 6.61 and 8.21 (ArH, s each, 6H each). The spectral finding that three carboxylate groups are equivalent supports the view that the complex adopts C_3 symmetry (Fig. 3).

Table	1.	Solvent	extraction	of	UO_2^{2+}	in	the	presence	of	competing	metal	cations	at
30 °Ca	ι)												

Metal(mmol dm ⁻³)	Ex%/Ex% without competing metal					
	2	4				
$Mg^{2+}(100)$	7 2	9 2				
$Ni^{2+}(0.25)$	93	98				
$Ni^{2+}(1.00)$	77	98				
$Zn^{2+}(0.73)$	63	98				

a) pH 5.9 with 10 mmol dm⁻³ acetate buffer. For other conditions see a footnote to Fig. 1.

100 80 60 20 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 [4]/[UO₂²⁺]

Fig. 1. pH Dependence for UO_2^{2+} extraction from water (25 cm³) to chloroform (5 cm³) at 30 °C: $[K_4UO_2(CO_3)_3] = 0.106$ mmol dm⁻³ in water, $[2(\bigcirc), 3(\triangle), 4(\square)] = 0.530$ mmol dm⁻³ in chloroform.

Fig. 2. Plot of Ex% vs. [calixarene]/[UO_2^{2+}]: pH 6.2 with 10 mmol dm⁻³ acetate buffer. The concentraion of UO_2^{2+} (added) as $K_4UO_2(CO_3)_3$) was maintained constant (1.06 x 10⁻⁴ mol dm⁻³).

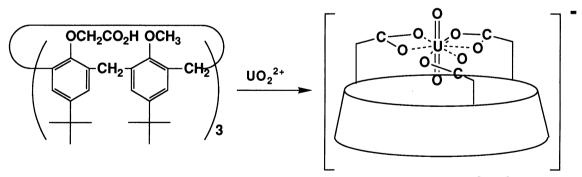


Fig. 3. Complex structure with C₃ symmetry proposed for the UO₂²⁺•4³⁻ complex.

The UO_2^{2+} selectivities in a two-phase solvent-extraction system are summarized in Table 1. As mentioned previously,⁷⁾ the Ex% values for 2 were significantly reduced, indicating that these metal cations can significantly compete with UO_2^{2+} for a binding-site in 2. Since 2 forms the 1:3 calix[6]arene/ UO_2^{2+} complex, the advantage of the calix[6]arene skeleton that can provide a pseudoplanar hexacoordination structure is not ultimately used. In contrast, the Ex% values for 4 were scarcely affected by these metal cations, indicating the high UO_2^{2+} affinity of three carboxylate groups arranged in C_3 symmetry.

In conclusion, the present paper demonstrated that in molecular design of super-uranophiles it is important to arrange three carboxylate groups in C_3 symmetry and the presence of extra carboxylate groups rather decreases the selectivity factor in a two-phase solvent-extraction system. We believe that the rigid skeleton of calix[6] arene is indispensable to firmly maintain the C_3 symmetry.

References

- 1) A. H. Alberts and D. J. Cram, J. Am. Chem. Soc., 99, 3880 (1977).
- 2) I. Tabushi, Y. Kobuke, and A. Yoshizawa, J. Am. Chem. Soc., 106, 2481 (1984) and references cited therein.
- 3) S. Shinkai, H. Koreishi, K. Ueda, T. Arimura, and O. Manabe, *J. Am. Chem. Soc.*, **109**, 6371 (1987).
- 4) T. Nagasaki and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1991, 1063.
- 5) T. Nagasaki, T. Arimura, and S. Shinkai, Bull. Chem. Soc. Jpn., 64, 2575 (1991).
- 6) T. S. Franczyk, K. R. Czerwinski, and K. N. Raymond, *J. Am. Chem. Soc.*, **114**, 8138 (1992).
- 7) S. Shinkai, Y. Shirahama, H. Satoh, O. Manabe, T. Arimura, K. Fujimoto, and T. Matsuda, J. Chem. Soc., Perkin Trans. 2, 1989, 1167.
- 8) A. Casnati, P. Minari, A. Pochini, and R. Ungaro, J. Chem. Soc., Chem. Commun., 1991, 1413.

(Received February 1, 1993)